Abstract

Conservation agriculture (CA) is increasingly promoted to build soil organic matter (SOM) based on findings from predominantly small-plot long-term agroecosystem experiments (LTAEs), with minimal on-farm data. Using commercial producer fields (n = 20) in the Brown Chernozemic soil zones of Saskatchewan, Canada, which were sampled before (1996) and after (2018) adopting direct-seeding and continuous cropping (1997), we examined changes in soil organic carbon (SOC) and total nitrogen (STN) stocks, along with C and N stocks in particulate (POM) and mineral-associated organic matter (MAOM), and compared them to a LTAE in the same soil zone. After 21 years, SOC and STN stocks (0-30 cm depth) increased by 13% and 21%, respectively, in commercial producer fields, and were more pronounced in finer- than coarser-textured soils. Conversely, there were no significant changes (0-30 cm depth) after 18 years (1998-2016) with CA [continuous wheat (CW-NT) and pulse-wheat under no-tillage (PW-NT)] in the LTAE, except that STN stock for PW-NT decreased by 7.7%. The estimated rate of change to 30 cm depth was similar between the commercial fields and LTAE for SOC (0.28 and 0.16 Mg C ha-1 yr-1, respectively), but not STN (0.04 and -0.03 Mg N ha-1 yr-1, respectively). Changes were more evident in the MAOM than POM fraction in both cases. Although the impact of CA may be similar, as observed for SOC, actual on-farm changes will depend on site-specific factors, and specific CA practice. Therefore, on-farm monitoring studies are needed for more accurate assessments of SOM changes and C sequestration potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call