Abstract

AbstractCarbon capture and storage (CCS) technology, a process consisting of the separation and capture of CO2 from point sources and injection into deep geological reservoirs for long‐term isolation from the atmosphere, is considered to be a promising technology that can mitigate global climate change. However, the risk of CO2 leakage from storage sites exists, and thus its impact on ecosystem functions needs to be understood for safe implementation of CCS. Plant and microbial parameters were monitored in artificial CO2 release experiments in the field and in greenhouses. In addition, plants and microorganisms were monitored in CO2 storage sites. We review the findings from these studies and suggest directions of future research for determining the impact of potential CO2 leakage from CCS sites on plants and microorganisms. Our review showed that under high levels of soil CO2, (i) plant stress response was visible within short period of time; (ii) dicots were more sensitive than monocots in most studies; and (iii) the responses of microorganisms were more diverse and harder to generalize than those of plants. Only a limited number of field and greenhouse experimental studies have been conducted so far, and thus more field and greenhouse experimental studies are needed to better understand the plant and microbial response to elevated soil CO2 levels and elucidate specific mechanisms underlying these responses. Determining the ecological impacts of geological CO2 storage and ensuring its environmental safety via such research will make CCS a more viable technology. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.