Abstract

Under the impacts of climate variability and human activities, there are statistically significant decreasing trends for streamflow in the Yellow River basin, China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow decrease for better water resources planning and management. In this study, the Qinhe River basin (QRB), a typical sub-basin in the middle reach of the Yellow River, was chosen as the study area to assess the impacts of climate variability and human activities on streamflow decrease. The trend and breakpoint of observed annual streamflow from 1956 to 2010 were identified by the nonparametric Mann–Kendall test. The results showed that the observed annual streamflow decreased significantly (P < 0.05) and a breakpoint around 1973 was detected. Therefore, the time series was divided into two periods: “natural period” (before the breakpoint) and “impacted period” (after the breakpoint). The observed annual streamflow decreased by 68.1 mm from 102.3 to 34.2 mm in the two periods. The climate elasticity method and hydrological model were employed to separate the impacts of climate variability and human activities on streamflow decrease. The results indicated that climate variability was responsible for 54.1 % of the streamflow decrease estimated by the climate elasticity method and 59.3 % estimated by the hydrological modeling method. Therefore, the climate variability was the main driving factor for streamflow decrease in the QRB. Among these driving factors of natural and anthropogenic, decrease in precipitation and increase in water diversion were the two major contributions of streamflow reduction. The finding in this study can serve as a reference for regional water resources management and planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.