Abstract

AbstractExplosive volcanic eruptions are one of the most important driver of climate variability. Yet, we still lack a fundamental understanding of how climate change may affect future eruptions. Here, we use an ensemble of simulations by 1‐D and 3‐D volcanic plume models spanning a large range of eruption source and atmospheric conditions to assess changes in the dynamics of future eruptive columns. Our results shed new light on differences between the predictions of 1‐D and 3‐D plume models. Furthermore, both models suggest that as a result of ongoing climate change, for tropical eruptions, (i) higher eruption intensities will be required for plumes to reach the upper troposphere/lower stratosphere and (ii) the height of plumes currently reaching the upper troposphere/lower stratosphere or above will increase. We discuss the implications of these results for the climatic impacts of future eruptions. Our simulations can directly inform climate model experiments on climate‐volcano feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.