Abstract

Climate change will cause substantial vegetation shifts across the world. Africa may face varying dynamics such as tree decline, savannization, and woody encroachment due to rising temperatures and rainfall changes. This study examines the potential effects of climate change on Kenyan vegetation and vegetation shifts for 2050 and 2100, employing a statistical model to predict vegetation state as driven by environmental variables, including temperature, soil moisture, livestock density, and topography. We evaluate the model by hindcasting it from 2020 to 2000 and then project future vegetation states for 2050 and 2100 under SSP 2–4.5 and SSP 5–8.5. In response to moderate emissions, a notable increase in arid-associated shrubland vegetation (53–58%) is forecasted, leading to the expansion of drylands at the expense of savannas, grasslands, and forests. Under high-emission scenarios, savannas are forecasted to expand (52–65%) at the expense of forested areas. Overall, dense forest cover declines across scenarios, affecting protected areas by promoting increased savanna cover and reducing forest area (40% to 50%). These projected shifts in major vegetation types would likely alter ecosystem functioning and associated services, impacting pastoralists and wildlife and raising biodiversity concerns. Protected areas in Kenya could lose 50% of their forests, highlighting the urgency of climate change mitigation. These findings offer a crucial foundation for future research and action on Kenya’s vegetation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call