Abstract

The impacts of climate change on streamflow in the upper Yangtze River basin were studied using four hydrological models driven by bias-corrected climate projections from five General Circulation Models under four Representative Concentration Pathways. The basin hydrological responses to climate forcing in future mid-century (2036–2065) and end-century (2070–2099) periods were assessed via comparison of simulation results in these periods to those in the reference period (1981–2010). An analysis of variance (ANOVA) approach was used to quantify the uncertainty sources associated with the climate inputs and hydrological model structures. Overall, the annual average discharge, seasonal high flow, and daily peak discharge were projected to increase in most cases in the twenty-first century but with considerable variability between models under the conditions of increasing temperature and a small to moderate increase in precipitation. Uncertainties in the projections increase over the time and are associated with hydrological model structures, but climate inputs represent the largest source of uncertainty in the upper Yangtze projections. This study assessed streamflow projections without considering water management practices within the basin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.