Abstract

Snow avalanches can repeatedly occur along the same track under different snowpack and meteorological conditions during the snow season in areas of snow avalanche activity. The snowfall, air temperature, and snow cover can change dramatically in a warming climate, causing significant changes in the snow avalanche risk. But how the risk of snow avalanche activity during the snow season will change under a warming climate remains an open question. Based on the observed meteorological and snowpack data from 1968 to 2021 and the snow avalanche activity data during the 2011–2021 snow seasons along a transportation corridor in the central Tianshan Mountains that has a typical continental snow climate, we analyzed the temporal distribution of the snow avalanche activity and the impacts of climate change on it. The results indicate that the frequency of the snow avalanche activity is characterized by a Gaussian bimodal distribution, resulting from interactions between the snowfall, air temperature, and snowpack evolution. In addition, the active period of wet snow avalanches triggered by temperature surges and high solar radiation has gradually moved forward from the second half to the first half of March with climate warming. The frequency and size of snowfall-triggered snow avalanches showed only a slight and insignificant increase. These findings are important for rationally arranging snow avalanche relief resources to improve the risk management of snow avalanche disasters, and highlight the necessity to immediately design risk mitigation strategies and disaster risk policies to improve our adaptation to climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.