Abstract
This paper describes the impacts of sea surface temperature (SST) rise and sea-level rise (SLR) on cyclonic storm surge flooding in western Bangladesh. A calibrated numerical hydrodynamic model was used to simulate surge wave propagation through the rivers and overland flooding. The model was calibrated with base condition (present climate), and then eight flooding scenarios of plausible future conditions were assessed by considering increased surge heights. Flooded area, flooding depth and surge intrusion length were computed by superimposing the predicted maximum water level information on a digital elevation model (DEM). This analysis showed that for a storm surge under 2 °C SST rise and 0.3 m SLR, flood risk area would be 15.3% greater than the present risk area and depth of flooding would increase by as much as 22.7% within 20 km from the coastline. Within the risk area, the study identified 5690 km 2 land (22% of exposed coast) as a high-risk zone (HRZ) where flooding of depth 1 m or more might occur, and people should move to nearby cyclone shelters during extreme cyclonic events. Predicted area of HRZ is 1.26 times the currently demarcated HRZ. It was estimated that 320 additional shelters are required to accommodate people in the newly identified HRZ. This information would be of value to policy and decision makers for future shelter planning and designing shelter heights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.