Abstract

Ho Chi Minh City (HCMC) is ranked among the top 10 cities in the world most likely to be severely affected by climate change and sea level rise (SLR). This study was to assess the impacts of change of upstream flow and sea level rise due to climate change on salinity intrusion in HCMC. The MIKE 11 model with modules hydrodynamic (HD) and advection-dispersion (AD) was applied to this problem by setting up the whole lower Dong Nai river system. Based upon the observed water level and salinity concentration data in 2009, the calibration and validation results indicated that the MIKE11 model was able to simulate the streamflow and salinity concentration with NSE values exceeding 0.6 for both calibration and validation periods. As a result, the differences in salinity concentration under climate change and SLR scenarios were analyzed. The simulated results illustrate that the saltwater will move inland in the future, especially in the dry season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.