Abstract

Based on the datasets of normalized difference vegetation index (NDVI), temperature, precipitation, and solar radiation and the methods of trend, partial correlation, and residual analyses, this study explored the spatiotemporal variation in NDVI and its response to climate change from 1982 to 2019 in eastern coastal areas of China. Then, the effects of climate change and non-climatic factors (e.g., human activities) on NDVI trends were analyzed. The results showed that:① the NDVI trend varied greatly in different regions, stages, and seasons. On average, the growing season NDVI increased faster during 1982-2000 (stage I) than that during 2001-2019 (stage Ⅱ) in the study area. Moreover, NDVI in spring showed a more rapid increase than that in other seasons in both stages. ② For a given stage, the relationships between NDVI and each climatic factor varied in different seasons. For a given season, the major climatic factors associated with NDVI change were different between the two stages. The relationships between NDVI and each climatic factor showed great spatial differences in the study period. In general, the increase in growing season NDVI in the study area from 1982 to 2019 was closely related to the rapid warming. The increase in precipitation and solar radiation in stage Ⅱ also played a positive role. ③ In the past 38 years, climate change played a greater role in the change in growing season NDVI than non-climatic factors, including human activities. Whereas non-climatic factors dominated the increase in growing season NDVI during stage I, climate change played a major role during stage Ⅱ. We suggest that more attention should be paid to the impacts of various factors on vegetation cover variation during different periods to promote the understanding of terrestrial ecosystem changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call