Abstract

Quantitatively assessing the characteristics of river streamflow variation and conducting research on attribution identification are the basis for formulating climate-change response strategies and rational use of water resources. Based on the daily streamflow data of the Zhuangtou Hydrological Station in 1970–2018, this paper analyzes the streamflow changes in the Beiluo River Basin and studies the impact of climate change and anthropogenic activities on the streamflow in this basin. A non-parametric Mann–Kendall test and Pettitt’s test were used to determine the trend and detect abrupt changes of streamflow and baseflow. The method based on precipitation and potential evapotranspiration, as well as the double-mass curve of precipitation–streamflow, was established to evaluate the impact of climate change and non-climate factors on annual streamflow. The results reveal a statistically significant downward trend (p = 0.01) in both annual streamflow and baseflow, with the abrupt point year in 1994 and 1988, respectively. When comparing to a modest declining trend in annual average precipitation, we see that the temperature showed a significant upward trend (p = 0.01), whose abrupt point year was 1996. Under the policy of returning farmland to forest, land-use analysis shows that the area of farmland had decreased by 222.4 km2, of which 31.4% was mainly converted into the forestland. By the end of 2015, the area of forestland had increased by 123.4 km2, which has largely caused streamflow decrease. For the method based on precipitation and potential evapotranspiration, climate change contributed 43.7% of the annual streamflow change, and human activities (mainly refers to LUCC) contributed 56.3%. For the DMC of precipitation–streamflow, the precipitation contributed 9.4%, and non-precipitation factors (mainly refers to human activities) contributed 90.6%, and human activities played a more vital part in driving streamflow reduction in different decades, with a contribution rate of more than 70%. This study is of great practical significance to the planning, management, development and utilization of water resources in basins.

Highlights

  • For streamflow reduction in the basin, the non‐precipitation contribution rate was 90.6% in 1995–2018, which is much higher than the contribution rate of precipitation

  • For streamflow reduction in the basin, the non-precipitation contribution rate was 90.6% in 1995–2018, which is much higher than the contribution rate of precipitation

  • Different methods were used to quantify the contribution of climatic factors and non-climatic factors to streamflow in the basin

Read more

Summary

Introduction

The Loess Plateau, located in the semi-humid and semi-arid region of China, is generally considered to be one of the most eroded areas in the world. It is a vital agricultural area in China, and the Yellow River flows here [4,5]. Due to the implementation of these measures, many significant changes have taken place in the area; it had a great influence on the biophysical conditions of streamflow and sediment regime, and played a great role in soil erosion control [6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call