Abstract

Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24h) and low nicotine exposure (6.17–194.5μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p=0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes early egg-laying events and slightly increased egg productions during the first 72h of adulthood. The expressions of 10 (egl-10, egl-44, hlh-14, ric-3, unc-103, unc-50, unc-68, sod-1, oxi-1, and old-1) out of 18 selected genes were affected significantly. Other tested genes were cat-4, egl-19, egl-47, egl-5, lin-39, unc-43, pink-1, and age-1. Changes in gene expression were more evident at low dosages than at relatively high levels. Genes implicated in reproduction, cholinergic signaling, and stress response were regulated by nicotine, suggesting widespread physiological impacts of nicotine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call