Abstract

China's Three Gorges Dam Project (TGP) is the world's largest hydroelectric power project, and as a consequence the reservoir area is at risk of ecological degradation. This study uses net primary productivity (NPP) as an important indicator of the reservoir ecosystem's productivity to estimate the impacts of the TGP in the local resettlement region of the Three Gorges Reservoir Area (TGRA) over the 2000–2010 period. The modeling method is based upon the Carnegie Ames Stanford Approach (CASA) terrestrial carbon model and uses Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data for modeling simulation. The results demonstrate that total NPP in the resettlement region decreased by 8.0% (632.8 Gg) from 2000 to 2010. The impact of the TGP on NPP is mainly mediated by land-use change brought about by the large-scale inundation of land and subsequent massive resettlement of both rural and urban residents. Nearby resettlement, land inundation, and relocation of old urban centers and affiliated urban dwellers are responsible for 54.3%, 28.0%, and 5.8% respectively of total NPP reduction in the resettlement region over the study period. The major national ecological projects implemented in the TGRA since 1998 have played a key role in offsetting the negative impacts of the TGP on NPP in the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.