Abstract

In this work, we studied the effects of char structural evolution and alkali and alkaline earth metallic species (AAEMs) catalysis on the reactivity during the char gasification with CO2, H2O, and their mixture. The gasified chars with different carbon conversion levels were prepared, and their physicochemical structures were characterized via nitrogen adsorption and FT-Raman techniques. The concentrations of AAEMs in different modes were obtained by the sequential chemical extraction method. The reactivities of the raw and gasified chars were analyzed by the thermogravimetric analysis. The gasification atmospheres had varied effects on the physicochemical structure of coal char. The gasified char obtained in the CO2 atmosphere had a lower aromatic condensation degree compared with that obtained in the H2O atmosphere, irrespective of the temperature. The impact of the atmospheres on the specific surface area of the char varied with the temperature because H2O and CO2 have different routes of development of pore structure with coal char. A large specific surface area facilitates the exposure and dispersion of more AAEMs on the surface of the channel, which is conducive to their contact with the gasification agent to play the catalytic role. Thus, the reactivity of the gasified char is well correlated with its specific surface area at different gasification temperatures. In the absence of AAEMs, the chemical structure of coal char becomes the dominant factor affecting the reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.