Abstract

Recently signal transduction engineering of secondary metabolism is receiving great interest as a powerful tool towards efficient production of valuable secondary metabolites. This work found that the calcineurin-signal transduction was significant to triterpene biosynthesis by higher fungus (mushroom). Addition of calcium ion (at 10mM) to static liquid cultures of Ganoderma lucidum, a famous traditional medicinal mushroom, was proved as a useful strategy to enhance the production of antitumor ganoderic acids (GAs), which resulted in 3.7-, 2.6-, 4.5-, 3.2- and 3.8-fold improvement of total GAs, individual GA-Mk, -T, -S, and -Me, respectively. Experiments using Ca2+ sensor inhibitors indicated the involvement of calcineurin signal in regulating GAs biosynthesis. Quantitative gene transcription analysis revealed that the expression levels of genes of GAs biosynthesis and Ca2+ sensor were up-regulated with calcium addition while down-regulated under the inhibitors addition, suggesting that higher GAs production may be resulted from higher expressions of those genes. Based on the results obtained, a possible model on the effect of external calcium ion on the GAs biosynthesis via calcineurin signal transduction pathway was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call