Abstract

Humic acid (HA) is a major natural organic pollutant widely coexisting with calcium ions (Ca2+) in natural water and wastewater bodies, and the coagulation-ultrafiltration process is the most typical solution for surface water treatment. However, little is known about the influences of Ca2+ on HA fouling in the ultrafiltration process. This study explored the roles of Ca2+ addition in HA fouling and the potential of Ca2+ addition for fouling mitigation in the coagulation-ultrafiltration process. It was found that the filtration flux of HA solution rose when Ca2+ concentration increased from 0 to 5.0 mM, corresponding to the reduction of the hydraulic filtration resistance. However, the proportion and contribution of each resistance component in the total hydraulic filtration resistance have different variation trends with Ca2+ concentration. An increase in Ca2+ addition (0 to 5.0 mM) weakened the role of internal blocking resistance (9.02% to 4.81%) and concentration polarization resistance (50.73% to 32.17%) in the total hydraulic resistance but enhanced membrane surface deposit resistance (33.93% to 44.32%). A series of characterizations and thermodynamic analyses consistently suggest that the enlarged particle size caused by the Ca2+ bridging effect was the main reason for the decreased filtration resistance of the HA solution. This work revealed the impacts of Ca2+ on HA fouling and demonstrated the feasibility to mitigate fouling by adding Ca2+ in the ultrafiltration process to treat HA pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call