Abstract

The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call