Abstract
Autochthonous carbon fixation by algae and subsequent deposition of particulate organic matter can have significant effects on redox conditions and elimination of trace organic chemicals (TOrCs) in managed aquifer recharge (MAR). This study investigated the impacts of different algae loadings (0–160 g/m2) and infiltration rates (0.06–0.37 m/d) on overall oxygen consumption and elimination of selected TOrCs (diclofenac, formylaminoantipyrine, gabapentin, and sulfamethoxazole) in adapted laboratory sand columns. An infiltration rate of 0.37 m/d in conjunction with an algae load of 80 g/m2 (dry weight) sustained oxic conditions in the sand bed and did not affect the degradation of TOrCs. Thus, the availability of easily degradable organic carbon from algae did not influence the removal of TOrCs at an influent concentration of 1 µg/L. In contrast, a lower infiltration rate of 0.20 m/d in combination with a higher algae loading of 160 g/m2 caused anoxic conditions for 30 days and significantly impeded the degradation of formylaminoantipyrine, gabapentin, sulfamethoxazole, and diclofenac. Especially the elimination of gabapentin did not fully recover within 130 days after pulsed algae deposition. Hence, measures like micro-sieving or nutrient control are required at bank filtration or soil aquifer treatment sites with low infiltration rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.