Abstract

The European Macaronesia Archipelagos (Azores, Madeira and Canary Islands) are struck frequently by extreme precipitation events. Here we present a comprehensive assessment on the relationship between atmospheric rivers and extreme precipitation events in these three Atlantic Archipelagos. The relationship between the daily precipitation from the various weather stations located in the different Macaronesia islands and the occurrence of atmospheric rivers (obtained from four different reanalyses datasets) are analysed. It is shown that the atmospheric rivers’ influence over extreme precipitation (above the 90th percentile) is higher in the Azores islands when compared to Madeira or Canary Islands. In Azores, for the most extreme precipitation days, the presence of atmospheric rivers is particularly significant (up to 50%), while for Madeira, the importance of the atmospheric rivers is reduced (between 30% and 40%). For the Canary Islands, the occurrence of atmospheric rivers on extreme precipitation is even lower.

Highlights

  • Extreme precipitation events (EPEs) occurring in the western Atlantic coast of the IberianPeninsula (IP) during the winter months have been historically linked to major socio-economic impacts such as flooding, landslides, extensive property damage and human casualties

  • Over Europe, the large amount of water vapour (WV) that is usually transported by these atmospheric rivers (ARs) can lead to EPEs and flooding as described for a few specific extreme events [3,9]

  • Since the ARs are usually associated with the low-level jet stream ahead of the cold front of an extratropical cyclone [5], they can be highly relevant when explaining most EPEs

Read more

Summary

Introduction

Peninsula (IP) during the winter months have been historically linked to major socio-economic impacts such as flooding, landslides, extensive property damage and human casualties. These events are usually associated to the presence of low pressure systems of Atlantic origin [1,2,3]. ARs play an important role in a climatological context [10,11], showing, in particular, that there is a strong relationship between ARs and the occurrence of annual maxima precipitation days in Western Europe [12]. This relationship is especially strong along the Western European seaboard, with some areas having eight of their top 10 annual maxima precipitation days related to the occurrence of ARs

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.