Abstract
AbstractThe ensemble Kalman filter (EnKF) has been widely used in atmosphere, ocean, and land applications. The observing network has been significantly developed, and thus, observations with highly dense temporal resolutions have become available. To better extract information from dense temporal observations, one straightforward strategy is to increase the assimilation frequency. However, more frequent assimilation may exacerbate the model imbalance and result in degraded forecasts. To combat the imbalance caused by ensemble‐based data assimilation due to sampling error and covariance localization, three‐ and four‐dimensional incremental analysis update (IAU) were proposed, which gradually introduce the analysis increments into model rather than intermittently updating the state. The trade‐off between the assimilation frequency and imbalance is systematically explored here by using an idealized two‐layer model and the NOAA GFS. Results from the idealized two‐layer model show that increasing assimilation frequency can reduce errors for state variables that are not sensitive to imbalances. For state variable that carries the signal of the external gravity mode and is sensitive to imbalances, increasing assimilation frequency without (with) IAU reduces (increases) errors. Without IAU, more frequent updates result in smaller increments and less insertion noise, while the initialization of IAU cannot effectively mitigate the imbalances with increased assimilation frequency. Results with a low‐resolution version of the NOAA GFS demonstrate that increasing assimilation frequency from 6 to 2 h improves the errors and biases of forecasts verified with conventional and radiance observations, although gravity wave noise in the forecast is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.