Abstract

Therapeutic proteins frequently need to be modified with high-molecular-weight molecules to improve their pharmacokinetic properties. The genetic linkage of therapeutic proteins to a high-molecular-weight zwitterionic peptide, termed EKP, offers a promising approach. As with any protein modification, EKP could impact the structural behavior and receptor binding properties of the linked therapeutic protein, thereby altering its bioactivity. To evaluate the effects of EKP on therapeutic proteins, we study the receptor binding properties of high-molecular-weight EKP linked to the growth colony-stimulating factor (GCSF) using the genetically based yeast display platform. We find that yeast-displayed EKP-GCSF and GCSF exhibits similar binding to its receptor GCSF-R, suggesting that EKP does not hinder receptor binding. Furthermore, yeast-displayed EKP-GCSF demonstrates protection against thermal denaturation compared to GCSF. Similarly, to study the structural effects of EKP on GCSF, we employ in silico modeling using alphaFold2 in conjunction with molecular dynamics (MD) simulations. Likewise, in silico modeling reveals that EKP does not alter the structural behavior of GCSF. Finally, we demonstrate the functional benefits of EKP, by which the EKP-GCSF fusion protein produced in Escherichia coli exhibits improved pharmacokinetics and prolonged bioactivity in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.