Abstract

AbstractLocomotion is essential for survival, but it requires resources such as energy and metabolites and therefore may conflict with other physiological processes that also demand resources, particularly expensive processes such as immunological responses. This possible trade-off may impose limits on either the magnitude of immune responses or the patterns of activity and performance. Previous studies have shown that invasive species may have a depressed immune response, allowing them to maintain locomotor function and reproduction even when sick. This may contribute to the ecological success of invasive species in colonization and dispersal. In contrast, noninvasive species tend to reduce activity as a response to infection. Here, we studied the impact of a simulated infection on locomotor performance and voluntary movement in the anurans Xenopus laevis (a globally invasive species) and Xenopus allofraseri (a noninvasive congeneric). We found that a simulated infection reduces locomotor performance in both species, with an accentuated effect on X. allofraseri. Voluntary movement was marginally different between species. Our data suggest that a simulated infection leads to behavioral depression and reduced locomotor performance in anurans and show that this effect is limited in the invasive X. laevis. Contrasting responses to an immune challenge have been reported in the few amphibian taxa analyzed to date and suggest relationships between ecology and immunology that deserve further investigation. Specifically, a depressed immune response may underlie a propension to invasion in some species. Whether this is a general trend for invasive species remains to be tested, but our data add to the growing body of work documenting depressed immune systems in invasive species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.