Abstract

In the discussion of climate impacts, 1.5 and 2 °C have become iconic values. This study examines the impacts of 1.5 and 2 °C global warming on water availability, runoff seasonality, and extreme monthly and daily runoff in two catchments, using the semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning-D, based on a combination of five global climate models (GCMs) and four representative concentration pathways (RCPs). Subsequently, quantitative assessments were made for projection uncertainties from GCMs and RCPs. The two catchments are the Yiluo River catchment (YLC) in northern China and the Beijiang River catchment (BJC) in southern China. The results indicate wetter flood seasons for YLC and warmer mean annual temperatures, drier springs, and more severe floods over long return periods (25 and 50 years) for both catchments. The change magnitude of most indicators is expected to be larger in YLC than in BJC. Mean annual temperatures in both catchments are expected to have smaller changes under the 1.5 °C scenario than under the 2.0 °C scenario. However, the change magnitude of the other hydrological variables is projected to be approximately equivalent for both catchments under both scenarios. Uncertainties of projected impacts from GCMs are generally larger than those from RCP scenarios, for both catchments and warming scenarios, with the exception of mean annual temperature of BJC. These findings indicate that effective measures are required to address increasing annual temperatures, more severe flood events (25- and 50-year return periods), and drier spring seasons in both catchments and wetter flood seasons in YLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.