Abstract

The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading conditions. The results revealed that the mixed grain microstructure had larger impact toughness scattering than the homogeneous one, and the impact toughness scattering was mainly caused by the scattering in the cleavage fracture stress σf. The value of σf is related to the size of the microcrack formed in the bainitic packet. When a bainitic packet-sized microcrack propagates from one bainitic packet into the adjacent packet, cleavage fracture occurs. The cleavage fracture is controlled by the few coarse packets in the microstructures, and the σf scattering is influenced by the varied distances/relative locations between these coarse packets, and homogenizing the distribution of fine bainitic packet sizes is an effective way to reduce the impact toughness scattering in the DBTT region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.