Abstract

The study was conducted to evaluate the impact toughness of flux-cored arc welded of SM570-TMC steel joint under different heat inputs, 0.9 kJ/mm (low heat input) and 1.6 kJ/mm (high heat input). Welding wire containing 0.4%Ni was selected on this experiment. Multi-pass welds were performed on SM570-TMC steel plate of 16 mm in thickness with a single V-groove butt joint on flat position (1G). The evaluation consists of observations on microstructure using an optical microscope and SEM-EDS, and mechanical properties including tensile, microhardness Vickers and Charpy V-notch (CVN) impact test at temperatures of 25, 0 and-20 °C. Results showed that the impact toughness of the base metal (BM) was higher than the weld metal (WM) at all test temperatures. Hardness and impact toughness of WM at low heat input was observed higher than when applied a high heat input. The welded samples at low and high heat inputs had high of tensile strength, and the fracture seemly occurs on the BM. Microstructure observation showed that at a high heat input, larger grains and microsegregation were observed. It might affect on decreasing their impact property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call