Abstract

Off-road racing vehicles require protection on the underside of their chassis in order to protect vital components from impact damage. The use of composites in thin laminate form to achieve this protection is widespread, although failure due to impact from foreign objects still occurs. The use of UHMWPE (Ultra High-Molecular Weight Polyethylene) fibres, which have superior mechanical properties to aramid fibres in vehicle belly guards, is not prevalent and, hence, could prove useful in this application. A comprehensive Finite Element Analysis (FEA) is performed in order to determine suitable laminate panel layups that can be tested, analysed, and compared to the original laminate layup, which comprises six layers of aramid and two layers of carbon fibre fabrics. This provides initial insight into the comparison of the new proposed laminates and reveals if improvements have been made. The laminates found using FEA are manufactured into panels that represent the fixture and loading cases seen in racing vehicles. Experimental testing is carried out on the various panels, and the results are compared to those of the mathematical modelling. Substituting the currently used carbon fibres with more aramid fibres increases the impact resistance of the panel. Using UHMWPE fibres greatly increases the impact resistance of the panel; however, fibre delamination becomes more prevalent. This is due to the poor fibre wettability of UHMWPE fibres and the large strain before failure of the fibres. The modelled results show good agreement with the experimental results in terms of the locations at which damage occurred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call