Abstract
Hybrid composites have been considered as modern materials for many engineering applications, yet there is still a major concern on the influence of stacking sequence configuration in hybrid composite laminates especially under impact loading. Therefore, the focus of this paper is to determine the optimized stacking sequence of glass/Kevlar fiber hybrid composite laminates under impact loading. Hybrid composite laminates were fabricated using vacuum bagging method with four different stacking sequences known as H1, H2, H3 and H4. Low velocity drop weight impact test (ASTM D7136) was conducted using a hemispherical nose impactor diameter of 12 mm with a mass of 6 kg at impact energy levels of 10 J, 20 J, 30 J, and 40 J. From the results obtained, H3 specimen which has a stacking sequence of glass fiber in the exterior part with Kevlar fiber in the interior part was concluded as the optimized stacking sequence with better impact resistance properties. H3 specimen recorded a higher value in peak load, maximum initiation energy, high impact strength, high strength to weight ratio and high total energy absorbed to weight ratio. In addition, it was observed that H3 specimen has less damaged area compared to H1, H2, and H4 specimens. This study contributes knowledge on the impact resistance properties of hybrid composite laminates which will be much useful for material selection and product development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.