Abstract

This paper shows how temperature influences impact energy for continuous fiber additively manufactured (AM) polymer matrix composites. AM composites were fabricated with a nylon-based matrix and four continuous reinforcements: fiberglass, high-temperature fiberglass (HSHT), Kevlar, and carbon. The tested temperatures ranged from −40 to 90 °C. The chosen printed configuration for the lattice structure and fiber volume was the configuration that was found to perform the best in the literature, with a volumetric fiber content of 24.2%. Impact tests showed that the best response was fiberglass, HSHT, Kevlar, and carbon, in that order. The impact resistance was lowered at temperatures below ambient temperatures and above 50 °C. Additionally, each material’s impact energy was adjusted to third-degree polynomials to model results, with correlation factors above 92%. Finally, the failure analysis showed the damage mechanisms of matrix cracking, delamination in the printing direction, fiber tearing, and fiber pulling as failure mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.