Abstract

This article presents a spatial impact source identification based on a one-dimensional fiber Bragg grating sensor array for application in tubular structures. The effective number of sensors and the sensor arrangement method were investigated for the plumbing pipe structure as the application subject. The fiber Bragg grating sensors were used to determine the impact location via the signal processing of the measured acoustic emission signals with a sampling frequency of 100 kHz. The root mean squared value–based algorithm, which was newly verified for a stiffened composite structure, was employed to identify the impact source in this article. Impact source identification was implemented according to the sensor arrangement and number of sensors, which were selectively used on the pipe structure among six multiplexed fiber Bragg grating sensors in one optical fiber line. This process shows that impact location detection is possible with only a one-dimensional sensor array compared to the results of a two-dimensional sensor array. The impact location could be predicted within a maximum error range of 31.12 mm, even if only one sensor was used to identify the impact source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.