Abstract

Due to the complexity involved and limited study on the topic, the equivalent static method, adopted in the current codes for structural design of bridges under ship collisions, does not take into account the dynamic amplification effect correctly. An accurate assessment of impact force based on refined numerical simulation is time consuming and is normally too complex for ordinary design procedure. Herein, with reference to the earthquake response spectrum method, an impact response spectrum method, which considers the dynamic amplification effect and is efficient for design, is proposed. Through refined numerical simulations of ship-rigid wall collisions, 81 impact force time histories associated with 9 typical ships under 9 velocities are obtained. The dynamic magnification factor (DMF) of single-degree-of-freedom (SDOF) systems with different periods and damping ratios experiencing the 81 impact force time histories are then studied. The relationship of DMF and period under different damping ratios, i.e. the DMF spectrum, is yielded by statistical analysis, based on which the impact response spectrum is obtained. Finally, the design combination method for multi-degree-of-freedom based on the impact response spectrum of SDOF is discussed for a continuous beam bridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.