Abstract

This research proposes using a hybrid core consisting of foam metal and a ceramic tile to enhance the impact resistance of the sandwich construction. We assess the impact response of such an enhanced sandwich under a low-velocity drop-hammer load. Two thicknesses and three positions of the ceramic tile were considered. The low-velocity impact experiment was performed with a 16 mm hemispherical hammerhead and an impact energy range of 30–70 J. The results indicate that the ceramic tile significantly increases the impact resistance of the sandwich. A sandwich with a ceramic tile in the middle of the aluminum foam core had the highest peak force, perforation resistance, and energy absorption. Moreover, the performance was better for the thicker ceramic tiles, and the different damage patterns of the post-mortem sandwiches were analyzed. The underlying mechanisms of enhanced performance are discussed schematically in detail for the sandwiches. These results indeed showed that this proposed sandwich construction could be considered as a potential candidate in high-performance protective component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.