Abstract

The difference between the measured atmospheric abundances of neon, argon, krypton and xenon for Venus, the Earth and Mars is striking. Because these abundances drop by at least two orders of magnitude as one moves outward from Venus to Mars, the study of the origin of this discrepancy is a key issue that must be explained if we are to fully understand the different delivery mechanisms of the volatiles accreted by the terrestrial planets. In this work, we aim to investigate whether it is possible to quantitatively explain the variation of the heavy noble gas abundances measured on Venus, the Earth and Mars, assuming that cometary bombardment was the main delivery mechanism of these noble gases to the terrestrial planets. To do so, we use recent dynamical simulations that allow the study of the impact fluxes of comets upon the terrestrial planets during the course of their formation and evolution. Assuming that the mass of noble gases delivered by comets is proportional to rate at which they collide with the terrestrial planets, we show that the krypton and xenon abundances in Venus and the Earth can be explained in a manner consistent with the hypothesis of cometary bombardment. In order to explain the krypton and xenon abundance differences between the Earth and Mars, we need to invoke the presence of large amounts of CO2-dominated clathrates in the Martian soil that would have efficiently sequestered these noble gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.