Abstract

The Fourier transform of generalized parton distribution functions at ξ = 0 describes the distribution of partons in the transverse plane. The physical significance of these impact parameter dependent parton distribution functions is discussed. In particular, it is shown that they satisfy positivity constraints which justify their physical interpretation as a probability density. The generalized parton distribution H is related to impact parameter distribution of unpolarized quarks for an unpolarized nucleon, [Formula: see text] is related to the distribution of longitudinally polarized quarks in a longitudinally polarized nucleon, and E is related to the distortion of the unpolarized quark distribution in the transverse plane when the nucleon has transverse polarization. The magnitude of the resulting transverse flavor dipole moment can be related to the anomalous magnetic moment for that flavor in a model independent way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.