Abstract

SynopsisIn this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms. The projectile and target x-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35 - 70 fm.

Highlights

  • Synopsis In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms

  • We present an impact parameter sensitive study of inner shell atomic processes in symmetric ion-atom collisions

  • The measurement was performed at the Experimental Storage Ring (ESR) at GSI Darmstadt with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms

Read more

Summary

Introduction

Synopsis In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms. The projectile and target x-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35 - 70 fm. We present an impact parameter sensitive study of inner shell atomic processes in symmetric ion-atom collisions.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.