Abstract

PurposeModified reduced FOV diffusion-weighted imaging (DWI) using spatially-tailored 2D RF pulses with tilted excitation plane (tilted r-DWI) has been developed. The purpose of this study was to evaluate the impact on image quality and quantitative apparent diffusion coefficient (ADC) values of tilted r-DWI for pancreatic ductal adenocarcinomas (PDAC) in comparison to conventional full-FOV DWI (f-DWI). MethodsThis retrospective study included 21 patients (mean 70.7, range 50–85 years old) with pathologically confirmed PDAC. All MR images were obtained using 3 T systems. Two radiologists evaluated presence of blurring or ghost artifacts, susceptibility artifacts, and aliasing artifacts; anatomic visualization of the pancreas; interslice signal homogeneity; overall image quality; and conspicuity of the PDAC. For quantitative analysis, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), signal-intensity ratio (SIR) and ADC values were measured using regions of interest. ResultsAll image quality scores except aliasing artifacts in tilted r-DWI were significantly higher than those in f-DWI (p < 0.01). The CNR and SIR of PDAC were significantly higher in tilted r-DWI than in f-DWI (6.7 ± 4.4 vs. 4.7 ± 3.9, 2.02 ± 0.72 vs. 1.72 ± 0.60, p < 0.01). Conversely, the SNR of PDAC in tilted r-DWI was significantly lower than that in f-DWI (56.0 ± 33.1 vs. 113.6 ± 67.3, p < 0.01). No significant difference was observed between mean ADC values of the PDAC calculated from tilted r-DWI (tilted r-ADC) and those from f-DWI (f-ADC) (1225 ± 250 vs. 1294 ± 302, p = 0.11). ConclusionThe r-DWI using 2D RF techniques with a tilted excitation plane was shown to significantly improve the image quality and CNR and reduce image artifacts compared to f-DWI techniques in MRI evaluations of PDAC without significantly affecting ADC values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call