Abstract

We investigate impact of a sphere onto a floating elastic sheet and the resulting formation and evolution of wrinkles in the sheet. Following impact, we observe a radially propagating wave, beyond which the sheet remains approximately planar but is decorated by a series of radial wrinkles whose wavelength grows in time. We develop a mathematical model to describe these phenomena by exploiting the asymptotic limit in which the bending stiffness is small compared to stresses in the sheet. The results of this analysis show that, at a time $t$ after impact, the transverse wave is located at a radial distance $r\sim t^{1/2}$ from the impactor, in contrast to the classic $r\sim t^{2/3}$ scaling observed for capillary--inertia ripples produced by dropping a stone into a pond. We describe the shape of this wave, starting from the simplest case of a point impactor, but subsequently addressing a finite-radius spherical impactor, contrasting this case with the classic Wagner theory of impact. We show also that the coarsening of wrinkles in the flat portion of the sheet is controlled by the inertia of the underlying liquid: short-wavelength, small-amplitude wrinkles form at early times since they accommodate the geometrically-imposed compression without significantly displacing the underlying liquid. As time progresses, the liquid accelerates and the wrinkles grow larger and coarsen. We explain this coarsening quantitatively using numerical simulations and scaling arguments, and we compare our predictions with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.