Abstract

Molecular assemblies that transform in response to pH and saccharide concentration are promising nanomaterials in the field of biomedicine, and polymeric micelles of amphiphilic polymers with phenylboronic acids (PBAs) have been studied. Herein, we report the impact of zwitterions on the acidity constant for the collapse and the glucose sensitivity of a polymeric micelle produced from a diblock copolymer comprising polyacrylamides with PBA and zwitterionic carboxybetaine (PAEBB-b-PCBAAm). The diblock copolymer was synthesized through reversible addition-fragmentation chain-transfer polymerization followed by deprotection. PAEBB-b-PCBAAm produced micellar aggregates in aqueous solutions at a neutral pH, and the polymeric micelles collapsed at a pH of 11.0 because the PBA transformed into a hydroxyboronate anion. The pKa decreased in the presence of glucose owing to boronate ester formation. The PCBAAm chain significantly increased the pH at which the molecular assemblies dissociated. This is probably because the pKa of boronic acid increased through the dipolar interaction of zwitterions, and/or the zwitterionic polymer corona is valid for screening of PBA ionization and electrostatic repulsion of boronate anions. This study on the modulation of pKa through the zwitterionic interaction can facilitate the molecular design of pH- and saccharide-responsive biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.