Abstract

The complementary metal-oxide-semiconductor compatible electrolyte-insulator-semiconductor (EIS) platform is a promising tool for the detection of ions and biomolecules. In this investigation, we fabricated a Y2O3 sensing membrane based EIS pH sensor by Pechini sol-gel method. X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy were implemented to analyze the effect of yttrium concentration (0.1, 0.2 and 0.3 M) on the crystalline structure, surface morphology and chemical composition of the sensing membrane, respectively. The Y2O3 based EIS sensor fabricated under the 0.2 M concentration manifests the near-super-Nernstian pH response (63.80 mV/pH) and high stability in terms of a low hysteresis voltage (5.7 mV) and a small drift rate (0.18 mV/h). We ascribe that the optimal yttrium content increases the surface roughness of the sensing membrane and the formation of a well-crystallized Y2O3 film as well as a stoichiometric Y2O3 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.