Abstract

To unlock the full potential of laser-cooled silica optical fibers, a better understanding of the internal mechanisms of heat generation is required. This work explores ytterbium-doped aluminosilicate fibers produced via industry-standard modified chemical vapor deposition (MCVD) techniques with varied levels of divalent ytterbium to determine their effect on anti-Stokes fluorescence thermal performance. The inclusion of Yb2+ is shown to have a significant negative impact on cooling potential. Yb2+ ions are shown to correlate with heat generation by two distinct mechanisms, absorption and quenching of active Yb3+ ions. This excess heating represents a reduction in quantum efficiency that is detrimental to Yb-doped fiber lasers and amplifiers beyond the laser-cooling application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.