Abstract
The potential maternal and foetal toxicity resulting from exposure to xylene at or below the allowable limit of 100 ppm during gestation is not thoroughly studied. The aim of this study was to investigate maternal and foetal outcomes following prenatal exposure to xylene during organogenesis. Pregnant Sprague Dawley (SD) rats were administered intraperitoneal (IP) corn oil (vehicle), 100, 500, and 1000 parts per million (ppm) of xylene from gestational day (GD) 6 until GD17. Clinical signs, maternal weight gain, and food consumption were recorded daily. A caesarean hysterectomy was performed on GD21 to assess the reproductive and foetal outcomes. Exposure to 1000 ppm of xylene caused a significant decrease in the maternal body weight and food consumption, and an increase in intrauterine foetal deaths. Foetal assessment revealed a significant decrease in foetal weight in both male and female foetuses of female rats treated with 500 and 1000 ppm. Male placental weight was significantly decreased in all xylene-treated groups, while 1000 ppm xylene significantly decreased female placental weight. Histologically, marked uterine inflammatory lesions, fibrosis of the liver and renal tissues, as well as increased placental glycogen content were observed. Immunohistochemistry revealed a significant increase in lipid peroxidation and apoptotic markers. Thus, the foeto-maternal toxicities of xylene have been shown to be mediated by a systemic inflammatory response that exacerbates intrauterine oxidative stress and impairs foeto-placental transfer, leading to an increase in foetal mortality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.