Abstract

Ground-based synthetic aperture radar (GB-SAR) sensors represent a cost-effective solution for change detection and ground displacement assessment of small-scale areas in real-time early warning applications. GB-SAR systems based on stepped linear frequency modulated continuous wave signals have led to several improvements such as a significant reduction of the acquisition time. Nevertheless, the acquisition time is still long enough to force a degradation of the quality of the reconstructed images because of possible short-term variable reflectivity of the scenario. This reduction of the quality may degrade the differential interferometric detection process. In scenarios where interesting targets are surrounded by vegetation, this is normally related to atmospheric conditions, in particular, the wind. The present paper characterizes the effect of the short-term variable reflectivity in the GB-SAR image reconstruction and evaluates its equivalent blurring effect, the decorrelation introduced in the SAR images, and the degradation of the extracted parameters. In order to validate the results, the study assesses different GB-SAR images obtained with the RISKSAR-X sensor, which has been developed by the Universitat Politecnica de Catalunya.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.