Abstract

In this paper, a deterministic security-constrained unit commitment (SCUC) model is deployed in order to optimize generation output and allocation for spinning reserve considering different wind power dispatch modes. In this model, the scheduling of power plants takes into account a simultaneous clearing of power, reserve capacity requirement and CO2 emission and so on. Spinning reserve is modelled as an exogenous parameter which represents load uncertainty and wind power uncertainty. Special attention in the study is given to determine the impact of different dispatch modes with wind power and different levels of spinning reserve requirement on system operation and costs. The proposed model can be formulated as a mixed-integer problem (MIP) and solved in GAMS by using the CPLEX optimizer. The model is applied to a wind-fired intensive power system for three case studies. The results include the optimal spinning reserve and generator output of each generator, CO2 emission cost and cost of wind power for each case study. The results show that taking wind power as a control option can improves system operation and costs if wind generation and traditional sources generation are coordinated properly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.