Abstract
SummaryWheat bran‐mediated effects on temperature‐induced state transitions of proofed bread dough were studied as function of its level of replacement (5%–15%) to wheat flour. Proofed dough was subjected to rheological tests at small deformations. During heating of proofed dough from 30 °C to 95 °C, the value of elastic modulus (G′) attained its maximum at a temperature () that represented peak gelatinisation temperature (TP). Dough with 15% bran depicted significant increase in TP over other formulations. Bran addition increased glass transition temperature (Tg) of dough and suppressed drop in elastic modulus (G′) at T > Tg. The above events resulted in decreased loaf‐specific volume and increased crumb hardness. The former was caused by retarded bubble expansion during initial stages of baking, explained by reduced uniaxial and biaxial extensibilities of dough. Mean bubble size depicted an inverse relationship with the hardness of breadcrumb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Food Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.