Abstract

The objective of this research paper is to relate the influence of dynamic wetting in a liquid/liquid/solid system to the breakup of emulsion droplets in capillaries. Therefore, modeling and simulation of liquid/liquid flow through a capillary constriction have been performed with varying dynamic contact angles from highly hydrophilic to highly hydrophobic. Advanced advection schemes with geometric interface reconstruction (isoAdvector) are incorporated for high interface advection accuracy. A sharp surface tension force model is used to reduce spurious currents originating from the numerical treatment and geometric reconstruction of the surface curvature at the interface. Stress singularities from the boundary condition at the three-phase contact line are removed by applying a Navier-slip boundary condition. The simulation results illustrate the strong dependency of the wettability and the contact line and interface deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call