Abstract

Unplanned readmissions following a hospitalization remain common despite significant efforts to curtail these. Wearable devices may offer help identify patients at high risk for an unplanned readmission. We conducted a multi-center retrospective cohort study using data from the All of Us data repository. We included subjects with wearable data and developed a baseline Feedforward Neural Network (FNN) model and a Long Short-Term Memory (LSTM) time-series deep learning model to predict daily, unplanned rehospitalizations up to 90 days from discharge. In addition to demographic and laboratory data from subjects, post-discharge data input features include wearable data and multiscale entropy features based on intraday wearable time series. The most significant features in the LSTM model were determined by permutation feature importance testing. In sum, 612 patients met inclusion criteria. The complete LSTM model had a higher area under the receiver operating characteristic curve than the FNN model (0.83 vs 0.795). The 5 most important input features included variables from multiscale entropy (steps) and number of active steps per day. Data available from wearable devices can improve ability to predict readmissions. Prior work has focused on predictors available up to discharge or on additional data abstracted from wearable devices. Our results from 35 institutions highlight how multiscale entropy can improve readmission prediction and may impact future work in this domain. Wearable data and multiscale entropy can improve prediction of a deep-learning model to predict unplanned 90-day readmissions. Prospective studies are needed to validate these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.