Abstract

Many studies have suggested that the processing of lignocellulosic biomass could provide a renewable feedstock to supplant much of the current demand on petroleum sources. Currently, alkyl imidazolium-based ionic liquids (ILs) have shown considerable promise in the pretreatment, solvation, and hydrolysis of lignocellulosic materials although their high cost and unfavorable viscosity has limited their widespread use. Functionalizing these ILs with an oligo(ethoxy) tail has previously been shown through experiment to decrease the IL's viscosity resulting in enhanced mass transport characteristics, in addition to other favorable traits including decreased inhibition of some enzymes. Additionally, the use of cosolvents to mitigate the cost and unfavorable traits of ILs is an area of growing interest with particular attention on water as the presence of water in biomass processes is inevitable. Through the use of biased and unbiased molecular dynamics (MD) simulations, this study provides a molecular-level perspective of the various solvent-solvent and solvent-solute interactions in binary mixtures of water and 1-methyltriethoxy-3-ethylimidazolium acetate ([Me-(OEt)3-Et-IM+] [OAc-]) in the presence of model cellulose compounds (i.e., glucose and cellobiose). It is observed that at ∼75% w/w IL and water a transition in the nanostructure of the solvent occurs between water-like and IL-like solvation characteristics. It is shown that H-bonding interactions between the anion and water are a major driving force that significantly impacts the solvent properties of the IL as well as conformational preferences of the cellulosic model compound. In addition, it is found that the oligo(ethoxy) cation tail is responsible for the reduction in the propensity for tail aggregation as compared to alkyl tails of similar length, which, combined with increased ionic shielding, results in increased diffusion and enhanced water-like solvation characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call