Abstract
AbstractThe Labrador Sea is a region of the North Atlantic known for its strong ocean currents and deep water formation, which contribute to the transport and mixing of water masses throughout the region. The absorbing and fluorescing properties of dissolved organic matter (DOM) were assessed to track the water masses and the in situ production in the Labrador Sea (>200 m). No significant differences in DOM composition were found in the mesopelagic waters (200–1,000 m). In the bathypelagic waters (1,000–4,000 m), the estimated dissolved organic carbon (DOC) and dissolved lignin concentrations, as well as humic‐like fluorescence intensities, allowed the discrimination of North East Atlantic Deep Water versus Denmark Strait overflow water. The humic‐like intensities were significantly different between upper Labrador Sea water (uLSW) and deep LSW (dLSW) suggesting their applications as tracers of deep winter mixing. The significant correlations with apparent oxygen utilization support the in situ production of humic‐like fluorescence and the net microbial consumption of DOC and lignin in the dark Labrador Sea. We also demonstrated that microbial activities play a role in the production of humic‐like compounds in the dLSW that experiences deep convection mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.