Abstract

The system of rice intensification (SRI) reportedly enhances yield with less water requirement. This claim was investigated to determine the effects of alternative cultivation methods and water regimes on crop growth and physiological performance. Treatment combinations compared SRI with the conventional transplanting system (CTS) using standard practices, evaluating both along a continuum from continuous flooding to water applications at 1, 3, 5, or 7 days after disappearance of ponded water (DAD), subjecting plants to differing degrees of water stress while reducing total water expenditure. SRI methods gave significant changes in plants’ phenotype in terms of root growth and tillering, with improved xylem exudation and photosynthetic rates during the grain-filling stage compared to CTS. This resulted in significant increases in panicle length, more grains and more filled grains panicle−1, greater 1,000-grain weight, and higher grain yield under SRI management. Overall, averaged across the five water regimes evaluated, SRI practice produced 49 % higher grain yield with 14 % less water than under CTS; under SRI, water productivity increased by 73 %, from 3.3 to 5.7 kg ha-mm−1. The highest CTS grain yield and water productivity were with the 1-DAD treatment (4.35 t ha−1 and 3.73 kg ha-mm−1); SRI grain yield and water productivity were the greatest at 3-DAD (6.35 t ha−1 and 6.47 kg ha-mm−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call