Abstract

AbstractRecently, considerable effort has been made to study cellulose/epoxy composites. However, there is a gap when it comes to understanding the post‐conditioning anomalous effect of moisture uptake on their mechanical and dynamic‐mechanical properties, and on their creep behavior. In this work, up to 10.0 wt% microcrystalline cellulose (MCC) was incorporated into epoxy resin by simple mixing and sonication. Epoxy/MCC composites were fabricated by casting in rubber silicone molds, and rectangular and dog‐bone test specimens were produced. The moisture uptake, dynamic mechanical, chemical, tensile, and creep behavior were evaluated. The incorporation of MCC increased the water diffusion coefficient. The changes in storage modulus and glass transition temperature, combined with Fourier‐transform infrared spectroscopy analysis, evidenced that water sorption in epoxies causes both plasticization and additional resin crosslinking, although the latter is prevented by the addition of MCC. The creep strain of the composites increased by 60% after conditioning, indicating that plasticization induced by water sorption plays an important role in the long‐term properties of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.