Abstract

Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear. Using mesocosms, we studied how photosynthetic properties of European beech and downy oak were impacted by multi-year warming and soil moisture reduction alone or combined, and how species interactions (intra- vs inter-specific interactions) modulated these effects. Warming of +5°C enhanced photosynthetic properties in oak but not beech, while moisture reduction decreased them in both species. Combined warming and moisture reduction reduced photosynthetic properties for both species, but no exacerbated effects were observed. Oak was less impacted by combined warming and limited moisture when interacting with beech than in intra-specific stands. For beech, species interactions had no impact on the photosynthetic responses to warming and moisture reduction, alone or combined. Warming had either no or beneficial effects on the photosynthetic properties, while moisture reduction and their combined effects strongly reduced photosynthetic responses. However, inter-specific interactions mitigated the adverse impacts of combined warming and drought in oak, thereby highlighting the need to deepen our understanding of the role of species interactions under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.